CS 188: Artificial Intelligence Spring 2010

Lecture 17: Bayes' Nets IV – Inference 3/16/2010

Pieter Abbeel - UC Berkeley

Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew Moore

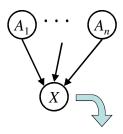
Announcements

- Assignments
 - W4 back today in lecture
 - Any assignments you have not picked up yet
 - In bin in 283 Soda [same room as for submission drop-off]
- Midterm
 - 3/18, 6-9pm, 0010 Evans --- no lecture on Thursday
 - We have posted practice midterms (and finals)
 - One note letter-size note sheet (two sides), non-programmable calculators [strongly encouraged to compose your own!]
 - Topics go through last Thursday
 - Section this week: midterm review

Bayes' Net Semantics

- Let's formalize the semantics of a Bayes' net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1 \ldots a_n)$$



$$P(X|A_1\ldots A_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

• For all joint distributions, we have (chain rule):
$$P(x_1,x_2,\ldots x_n) = \prod_{i=1}^n P(x_i|x_1,\ldots,x_{i-1})$$

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

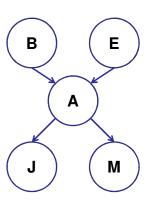
Inference

- Inference: calculating some useful quantity from a joint probability distribution
- Examples:
 - Posterior probability:

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

Most likely explanation:

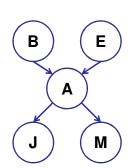
$$\operatorname{argmax}_q P(Q = q | E_1 = e_1 \ldots)$$



Inference by Enumeration

- Given unlimited time, inference in BNs is easy
- Recipe:
 - State the marginal probabilities you need
 - Figure out ALL the atomic probabilities you need
 - Calculate and combine them
- Example:

$$P(+b|+j,+m) = \frac{P(+b,+j,+m)}{P(+j,+m)}$$

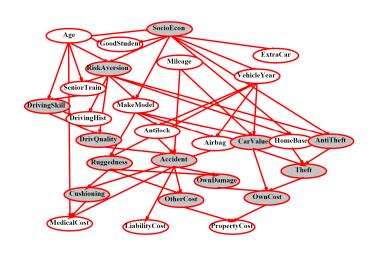


7

Example: Enumeration

 In this simple method, we only need the BN to synthesize the joint entries

$$P(+b,+j,+m) = P(+b)P(+e)P(+a|+b,+e)P(+j|+a)P(+m|+a) + P(+b)P(+e)P(-a|+b,+e)P(+j|-a)P(+m|-a) + P(+b)P(-e)P(+a|+b,-e)P(+j|+a)P(+m|+a) + P(+b)P(-e)P(-a|+b,-e)P(+j|-a)P(+m|-a)$$



9

Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables
 - You end up repeating a lot of work!
- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration
- We'll need some new notation to define VE

Factor Zoo I

- Joint distribution: P(X,Y)
 - Entries P(x,y) for all x, y
 - Sums to 1

Т	W	Р	
hot	sun	0.4	
hot	rain	0.1	
cold	sun	0.2	
cold	rain	0.3	

P(T, W)

- Selected joint: P(x,Y)
 - A slice of the joint distribution
 - Entries P(x,y) for fixed x, all y
 - Sums to P(x)

P(cold, W)

Т	W	Р
cold	sun	0.2
cold	rain	0.3

11

Factor Zoo II

- Family of conditionals: P(X |Y)
 - Multiple conditionals
 - Entries P(x | y) for all x, y
 - Sums to |Y|

P(W|T)

Т	W	Р	
hot	sun	8.0	$\begin{bmatrix} \\ D \end{bmatrix}$
hot	rain	0.2	$\mid \mid P(V) \mid$
cold	sun	0.4	
cold	rain	0.6	$\mid \mid P(V) \mid$

P(W|hot)

P(W|cold)

- Single conditional: P(Y | x)
 - Entries P(y | x) for fixed x, all y
 - Sums to 1

P(W|cold)

Т	W	Р
cold	sun	0.4
cold	rain	0.6

Factor Zoo III

- Specified family: P(y | X)
 - Entries P(y | x) for fixed y, but for all x
 - Sums to ... who knows!

P(rain T)
----------	---

Т	W	Р	
hot	rain	0.2	P(rain hot)
cold	rain	0.6	brace P(rain cold)

- In general, when we write $P(Y_1 \dots Y_N \mid X_1 \dots X_M)$
 - It is a "factor," a multi-dimensional array
 - Its values are all P(y₁ ... yN | x₁ ... xM)
 - Any assigned X or Y is a dimension missing (selected) from the array

13

Example: Traffic Domain

- Random Variables
 - R: Raining
 - T: Traffic
 - L: Late for class!

P(T|R)

•			
+r	+t	0.8	
+r	-t	0.2	
-r	+t	0.1	
-r	-t	0.9	

P(L|R)

	` '	
+t	+	0.3
+t	-1	0.7
-t	+	0.1
-t	-	0.9

Variable Elimination Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

P(T R)			
+r +t 0.8			
+r	-t	0.2	
-r	+t	0.1	
-r	-t	0.9	

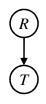
- Any known values are selected
 - ullet E.g. if we know $\,L=+\ell$, the initial factors are

P(R)		
+r	0.1	
-r	0.9	

VE: Alternately join factors and eliminate variables

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
 - Just like a database join
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved
- Example: Join on R



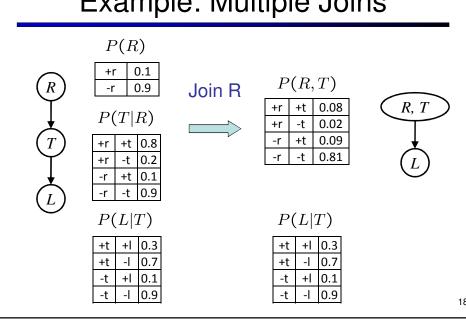
0.9

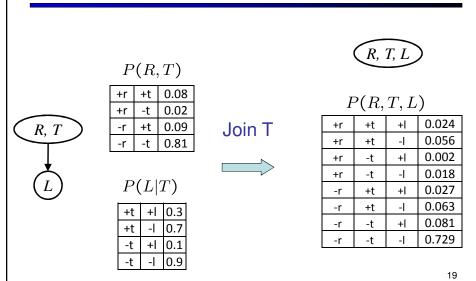
+t	8.0	+r	+t	0.
-t	0.2	+r	-t	0.
+t	0.1	-r	+t	0.
-t	0.9	-r	-t	0.

Computation for each entry: pointwise products

$$\forall r, t: P(r,t) = P(r) \cdot P(t|r)$$

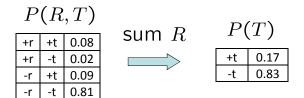
Example: Multiple Joins





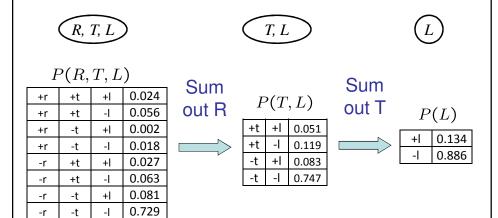
Operation 2: Eliminate

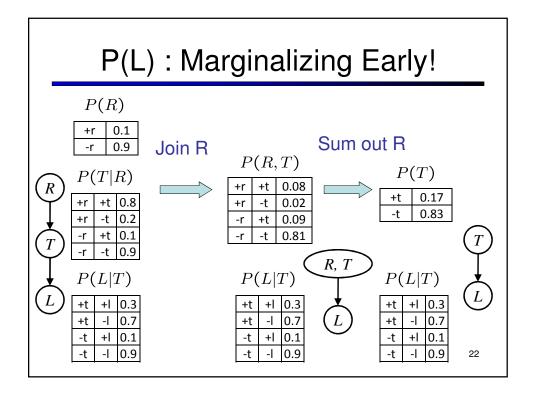
- Second basic operation: marginalization
- Take a factor and sum out a variable
 - Shrinks a factor to a smaller one
 - A projection operation
- Example:

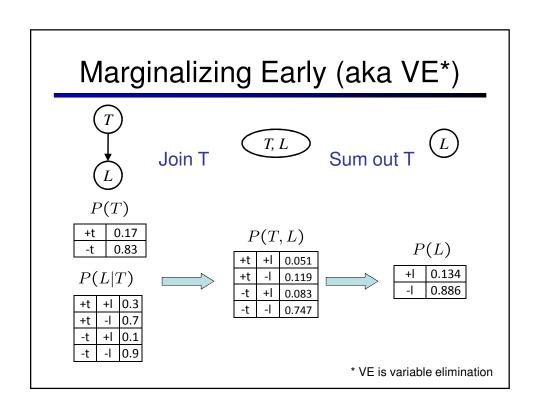


20

Multiple Elimination







Evidence

- If evidence, start with factors that select that evidence
 - No evidence uses these initial factors:

$$P(R)$$
+r 0.1
-r 0.9

P(T R)		
+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

• Computing P(L|+r) , the initial factors become:

$$P(+r)$$

We eliminate all vars other than query + evidence

24

Evidence II

- Result will be a selected joint of query and evidence
 - E.g. for P(L | +r), we'd end up with:

0.074

$$P(+r,L)$$

$$|+r|+| 0.026$$

$$P(L|+r)$$

- To get our answer, just normalize this!
- That's it!

General Variable Elimination

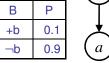
- Query: $P(Q|E_1 = e_1, \dots E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize

Variable Elimination Bayes Rule

Start / Select

Join on B

P(B)



P(a, B)

()				
Α	В	Р		
+a	+b	0.08		
+a	¬b	0.09		

P(B|a)

Α	В	Р
+a	+b	8/17
+a	¬b	9/17

Normalize

27

$P(A|B) \rightarrow P(a|B)$

		•
В	Α	Р
+b	+a	0.8
L.		0.0
D	ia	0.2
¬b	+a	0.1
h		9
٥	ū	9

Example

 $P(B|j,m) \propto P(B,j,m)$

Choose A

$$\nearrow$$
 $P(j, m, A|B, E)$ \sum $P(j, m|B, E)$

P(B)

28

Example

Choose E

$$P(j,m,E|B)$$
 \sum $P(j,m|B)$

Finish with B

P(j,m|B,E)

$$P(B)$$
 $P(j,m|B)$

$$P(j,m,B)$$
 Normalize $P(B|j,m)$

Variable Elimination

- What you need to know:
 - Should be able to run it on small examples, understand the factor creation / reduction flow
 - Better than enumeration: saves time by marginalizing variables as soon as possible rather than at the end
- We will see special cases of VE later
 - On tree-structured graphs, variable elimination runs in polynomial time, like tree-structured CSPs
 - You'll have to implement a tree-structured special case to track invisible ghosts (Project 4)