# CS 188: Artificial Intelligence Spring 2010 

Lecture 17: Bayes' Nets IV - Inference 3/16/2010

Pieter Abbeel - UC Berkeley
Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew Moore

## Announcements

- Assignments
- W4 back today in lecture
- Any assignments you have not picked up yet
- In bin in 283 Soda [same room as for submission drop-off]
- Midterm
- 3/18, 6-9pm, 0010 Evans --- no lecture on Thursday
- We have posted practice midterms (and finals)
- One note letter-size note sheet (two sides), non-programmable calculators [strongly encouraged to compose your own!]
- Topics go through last Thursday
- Section this week: midterm review


## Bayes' Net Semantics

- Let's formalize the semantics of a Bayes' net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$


$P\left(X \mid A_{1} \ldots A_{n}\right)$

- CPT: conditional probability table
- Description of a noisy "causal" process

A Bayes net $=$ Topology $($ graph $)+$ Local Conditional Probabilities

## Probabilities in BNs

- For all joint distributions, we have (chain rule):

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)
$$

- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
- The topology enforces certain conditional independencies


## Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution


## Inference

- Inference: calculating some useful quantity from a joint probability distribution
- Examples:
- Posterior probability:

$$
P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)
$$

- Most likely explanation:


$$
\operatorname{argmax}_{q} P\left(Q=q \mid E_{1}=e_{1} \ldots\right)
$$

## Inference by Enumeration

- Given unlimited time, inference in BNs is easy
- Recipe:
- State the marginal probabilities you need
- Figure out ALL the atomic probabilities you need
- Calculate and combine them
- Example:

$$
\begin{aligned}
& P(+b \mid+j,+m)= \\
& \quad \frac{P(+b,+j,+m)}{P(+j,+m)}
\end{aligned}
$$



## Example: Enumeration

- In this simple method, we only need the BN to synthesize the joint entries

$$
\begin{aligned}
& P(+b,+j,+m)= \\
& P(+b) P(+e) P(+a \mid+b,+e) P(+j \mid+a) P(+m \mid+a)+ \\
& P(+b) P(+e) P(-a \mid+b,+e) P(+j \mid-a) P(+m \mid-a)+ \\
& P(+b) P(-e) P(+a \mid+b,-e) P(+j \mid+a) P(+m \mid+a)+ \\
& P(+b) P(-e) P(-a \mid+b,-e) P(+j \mid-a) P(+m \mid-a)
\end{aligned}
$$

## Inference by Enumeration?



## Variable Elimination

- Why is inference by enumeration so slow?
- You join up the whole joint distribution before you sum out the hidden variables
- You end up repeating a lot of work!
- Idea: interleave joining and marginalizing!
- Called "Variable Elimination"
- Still NP-hard, but usually much faster than inference by enumeration
- We'll need some new notation to define VE


## Factor Zoo I

- Joint distribution: $\mathrm{P}(\mathrm{X}, \mathrm{Y})$
- Entries $P(x, y)$ for all $x, y$
- Sums to 1

| $P(T, W)$ |  |  |
| :---: | :---: | :---: |
| T | W | P |
| hot | sun | 0.4 |
| hot | rain | 0.1 |
| cold | sun | 0.2 |
| cold | rain | 0.3 |

- Selected joint: $P(x, Y)$
- A slice of the joint distribution
- Entries $P(x, y)$ for fixed $x$, all $y$
- Sums to P(x)
$P($ cold,$W)$

| T | W | P |
| :---: | :---: | :---: |
| cold | sun | 0.2 |
| cold | rain | 0.3 |

## Factor Zoo II

- Family of conditionals:
$P(W \mid T)$
$P(X \mid Y)$
- Multiple conditionals
- Entries $P(x \mid y)$ for all $x, y$
- Sums to |Y|

| T | W | P |
| :---: | :---: | :---: |
| hot | sun | 0.8 |
| hot | rain | 0.2 |
| cold | sun | 0.4 |
| cold | rain | 0.6 |$.-P(W \mid$ hot $)$

- Single conditional: $\mathrm{P}(\mathrm{Y} \mid \mathrm{x})$
- Entries $\mathrm{P}(\mathrm{y} \mid \mathrm{x})$ for fixed x , all y
- Sums to 1
$P(W \mid$ cold $)$

| T | W | P |
| :---: | :---: | :---: |
| cold | sun | 0.4 |
| cold | rain | 0.6 |

## Factor Zoo III

- Specified family: $P(y \mid X)$
- Entries $P(y \mid x)$ for fixed $y$, but for all x
- Sums to ... who knows!

$$
P(\text { rain } \mid T)
$$

\(\left.\begin{array}{|c|c|c|}\hline \mathrm{T} \& \mathrm{W} \& \mathrm{P} <br>
\hline hot \& rain \& 0.2 <br>
\hline cold \& rain \& 0.6 <br>

\hline\end{array}\right\}\)| $P($ rain $\mid$ hot $)$ |
| :--- |
| $P($ rain $\mid$ cold $)$ |

- In general, when we write $P\left(Y_{1} \ldots Y_{N} \mid X_{1} \ldots X_{M}\right)$
- It is a "factor," a multi-dimensional array
- Its values are all $P\left(y_{1} \ldots y_{N} \mid x_{1} \ldots x_{M}\right)$
- Any assigned $X$ or $Y$ is a dimension missing (selected) from the array


## Example: Traffic Domain

- Random Variables
- R: Raining
- T: Traffic
- L: Late for class!

| $R$ | $P(R)$ |  |  |
| :---: | :---: | :---: | :---: |
|  | +r |  | 0.1 |
|  |  |  |  |
| T | $P(T \mid R)$ |  |  |
|  | +r | +t | 0.8 |
| L | +r | -t | 0.2 |
|  | -r | +t | 0.1 |
|  | -r | -t | 0.9 |

$P(L \mid R)$

| +t | +l | 0.3 |
| :---: | :---: | :---: |
| +t | -I | 0.7 |
| -t | +l | 0.1 |
| -t | -l | 0.9 |

## Variable Elimination Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

| $P(R)$ |  | $P(T \mid R)$ |  |  | $P(L \mid T)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| +r | 0.1 | +r | +t | 0.8 | +t | + | 0.3 |
| -r | 0.9 | +r | -t | 0.2 | +t | -1 | 0.7 |
|  |  | -r | +t | 0.1 | -t | +1 | 0.1 |
|  |  | -r | -t | 0.9 | -t | -1 | 0.9 |

- Any known values are selected
- E.g. if we know $L=+\ell$, the initial factors are

| $P(R)$ | $P(T \mid R)$ |
| :---: | :---: | :---: |
| $+r$ | 0.1 |
| $-r$ | 0.9 |$\quad$| $+r$ | +t | 0.8 |
| :---: | :---: | :---: |
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| $-r$ | -t | 0.9 |$\quad$| +t | +l | 0.3 |
| :---: | :---: | :---: | :---: |
| -t | +l | 0.1 |

- VE: Alternately join factors and eliminate variables


## Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
- Just like a database join
- Get all factors over the joining variable
- Build a new factor over the union of the variables involved
- Example: Join on R

- Computation for each entry: pointwise products

$$
\forall r, t: \quad P(r, t)=P(r) \cdot P(t \mid r)
$$

## Example: Multiple Joins

$P(R)$

(R) | $+r$ | 0.1 |
| :---: | :---: |
| $-r$ | 0.9 | Join R $\quad P(R, T)$



| +r | t | 0.08 |
| :---: | :---: | :---: |
| +r | -t | 0.02 |
| -r | +t | 0.09 |
| -r | -t | 0.81 |


$P(L \mid T)$

| +t | +l | 0.3 |
| :---: | :---: | :---: |
| +t | -I | 0.7 |
| -t | +l | 0.1 |
| -t | -I | 0.9 |

$P(L \mid T)$

| +t | $\mathrm{+l}$ | 0.3 |
| :---: | :---: | :---: |
| +t | -l | 0.7 |
| -t | $\mathrm{+l}$ | 0.1 |
| -t | -l | 0.9 |

18

## Example: Multiple Joins



| +t | +l | 0.3 |
| :---: | :---: | :---: |
| +t | -l | 0.7 |
| -t | +l | 0.1 |
| -t | -l | 0.9 |


| $P(R, T, L)$ |  |  |  |
| :--- | :---: | :---: | :---: |
| $+r$ $+t$ +1 0.024 <br> $+r$ $+t$ -- 0.056 <br> $+r$ $-t$ +1 0.002 <br> $+r$ $-t$ -- 0.018 <br> $-r$ $+t$ +1 0.027 <br> $-r$ $+t$ -- 0.063 <br> $-r$ $-t$ +1 0.081 <br> $-r$ $-t$ $-l$ 0.729 |  |  |  |

## Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
- Shrinks a factor to a smaller one
- A projection operation
- Example:

| $P(R, T)$ |  |  |
| :---: | :---: | :---: |
| +r | +t | 0.08 |
| +r | -t | 0.02 |
| -r | +t | 0.09 |
| -r | -t | 0.81 |



## Multiple Elimination


(L)

| $P(R, T, L)$ |  |  |  |
| :---: | :---: | :---: | :---: |
| +r | +t | +1 | 0.024 |
| +r | +t | - | 0.056 |
| +r | -t | +1 | 0.002 |
| +r | -t | - | 0.018 |
| -r | +t | +1 | 0.027 |
| -r | +t | -1 | 0.063 |
| -r | -t | +1 | 0.081 |
| -r | -t | - | 0.729 |

Sum out R

| $P(T, L)$ |  |  |
| :---: | :---: | :---: |
| +t | +1 | 0.051 |
| +t | -I | 0.119 |
| -t | +1 | 0.083 |
| -t | -I | 0.747 |



## $P(L)$ : Marginalizing Early!

## $P(R)$

| +r | 0.1 |
| :---: | :---: |
| -r | 0.9 |$\quad$ Join R



(T)


## Marginalizing Early (aka VE*)

| +t | 0.17 |
| :---: | :---: |
| -t | 0.83 |

$P(T, L)$
$P(L \mid T)$


| +t | +I | 0.051 |
| :---: | :---: | :---: |
| +t | -I | 0.119 |
| -t | +l | 0.083 |
| -t | -I | 0.747 |



## Evidence

- If evidence, start with factors that select that evidence
- No evidence uses these initial factors:

| $P(R)$ | $P(T \mid R)$ |
| :---: | :---: |
| $+r$ | 0.1 |
| $-r$ | 0.9 |$\quad$| $+r$ | +t | 0.8 |
| :---: | :---: | :---: |
| $+r$ | -t | 0.2 |
| -r | t t | 0.1 |
| -r | -t | 0.9 |$\quad$| +t | +l | 0.3 |
| :---: | :---: | :---: | :---: |
| +t | -l | 0.7 |
| -t | +l | 0.1 |
| -t | -l | 0.9 |

- Computing $P(L \mid+r)$, the initial factors become:
- We eliminate all vars other than query + evidence


## Evidence II

- Result will be a selected joint of query and evidence
- E.g. for $\mathrm{P}(\mathrm{L} \mid+\mathrm{r})$, we'd end up with:

| $P(+r, L)$ |  |  | Normalize | $P(L \mid+r)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| +r | +1 | 0.026 |  | +1 | 0.26 |
| +r | - | 0.074 |  | -1 | 0.74 |

- To get our answer, just normalize this!
- That's it!


## General Variable Elimination

- Query: $P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)$
- Start with initial factors:
- Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
- Pick a hidden variable H
- Join all factors mentioning H
- Eliminate (sum out) H
- Join all remaining factors and normalize


## Variable Elimination Bayes Rule

Start / Select
$P(B)$

| B | P |
| :---: | :---: |
| +b | 0.1 |
| $\neg \mathrm{~b}$ | 0.9 |


$P(A \mid B) \rightarrow P(a \mid B)$

| B | A | P |
| :---: | :---: | :---: |
| +b | +a | 0.8 |
| b | +a | 0.2 |
| $\neg \mathrm{~b}$ | +a | 0.1 |
| b | a | 0.0 |

Join on B
Normalize
$P(a, B)$

| A | B | P |
| :---: | :---: | :---: |
| +a | +b | 0.08 |
| +a | $\neg \mathrm{b}$ | 0.09 |

$P(B \mid a)$

| A | B | P |
| :---: | :---: | :---: |
| +a | +b | $8 / 17$ |
| +a | $\neg \mathrm{b}$ | $9 / 17$ |

## Example

$P(B \mid j, m) \propto P(B, j, m)$

$$
P(B) \quad P(E) \quad P(A \mid B, E) \quad P(j \mid A) \quad P(m \mid A)
$$

Choose A


$$
P(B) \quad P(E) \quad P(j, m \mid B, E)
$$

## Example

$P(B) \quad P(E) \quad P(j, m \mid B, E)$

Choose E

$P(B) \quad P(j, m \mid B)$

Finish with B

| $P(B)$ |  |  |
| :---: | :---: | :---: |
| $P(j, m \mid B)$ | $\boxed{x}$ | $P(j, m, B)$ |

## Variable Elimination

- What you need to know:
- Should be able to run it on small examples, understand the factor creation / reduction flow
- Better than enumeration: saves time by marginalizing variables as soon as possible rather than at the end
- We will see special cases of VE later
- On tree-structured graphs, variable elimination runs in polynomial time, like tree-structured CSPs
- You'll have to implement a tree-structured special case to track invisible ghosts (Project 4)

